Survey Research Methods

Jeff Lazo & Eve Gruntfest

WAS*IS

November 8, 2005
Survey research methods

Survey experience

Studies:

- Arkansas River Irrigation, groundwater, spotted owls, coal dust, global warming & recreational fishing, global warming & duck hunting, Green Bay, Kalamazoo, Hudson, air toxics, Confidence, Contra Costa, Hospital, Reliable, Storm, Hurricane

Development:

- focus-groups
- cognitive interviews

Implementation:

- mail
- telephone
- internet
- focus-group site written
- mixed methods

Changing from what **WAS** to what **IS** the future of integrated weather studies
Survey research methods

Advantages

• Efficient for collecting large amount of information
• Statistical techniques to determine validity, reliability, and statistical significance
• Flexible to collect wide range of information
 – attitudes, values, beliefs, and past behaviours.
• Standardized - relatively free from several types of errors
• Relatively easy to administer
• Economy in data collection

Changing from what WAS to what IS the future of integrated weather studies
Survey research methods

Disadvantages

• Subjects’ motivation, memory, and ability to respond
• Not appropriate for studying complex social phenomena
• Structured surveys, particularly those with closed ended questions, may have low validity when researching affective variables.
• *Respondents* usually self-selected
• Participants may not answer honestly

Survey research methods

- Is a survey the correct approach?
- Constraints on survey research
 - Paperwork Reduction Act
 - Other regulatory constraints
 - Human subjects - Institutional Review Board
- Costs and time resources for survey research
 - Natural resources damage assessment (NRDA)
 - Grad students and pizzas

Changing from what **WAS** to what **IS** the future of integrated weather studies
Survey research methods

Objectives
• What information do I need?
• What will I do with information?
• How will it be analyzed?
• Who will it be presented to?

Different types of surveys
• attitudinal
• behavioral
• information gathering (economic surveys)
• valuation

Changing from what WAS to what IS the future of integrated weather studies
Survey biases

- social desirability bias
- interviewer bias
- non-response bias
 - item non-response
- measurement bias
- hypothetical bias
- information bias

Changing from what WAS to what IS the future of integrated weather studies
Reliability and Validity

Population parameter (Red line) = Sample statistic (Yellow line) --> unbiased
High variance (Green line)
Unreliable but valid

Changing from what **WAS** to what **IS** the future of integrated weather studies
Reliability and Validity

Population parameter (Red line) <> Sample statistic (Yellow line) --> Biased low variance (Green line)
Invalid but reliable

Changing from what **WAS** to what **IS** the future of integrated weather studies
National Survey of Nonprofit Organizations

Figure 1: Survey Design and Implementation Procedures

Changing from what WAS to what IS the future of integrated weather studies
Survey research – components

• Survey design
• Sampling
• Implementation
• Analysis and reporting
Survey design

Technical background

Preliminary survey design

• introduction
 – tell respondents purpose of the survey
• providing information
• how to ask the correct questions
• response categories
• socio-demographic information
• de-briefing questions

Changing from what **WAS** to what **IS** the future of integrated weather studies
Survey design

Focus-groups
- Mary Hayden - more on qualitative research
- Ex: focus-group 9/10/01 – Poughkeepsie, NY

One-on-one cognitive interviews
- verbal protocols
 - think alouds
- retrospective reports

Pre-testing survey
- survey instrument
- implementation method
- analysis planning

Changing from what **WAS** to what **IS** the future of integrated weather studies
Survey design – asking the question

• Did you happen to have murdered your wife?
• As you know, many people kill their wives nowadays. Did you happen to have killed yours?
• Do you know about other people who have killed their wives? How about yourself?
• Thank you for completing this survey, and by the way, did you kill your wife?
• Three cards are attached to this survey. One says your wife died of natural causes; one says you killed her; and the third says Other (explain). Please tear off the cards that do not apply, leaving the one that best describes your situation.

http://faculty.ncwc.edu/toconnor/308/308lect07.htm
Asking the question

How often do you use weather forecasts in planning for each of the activities listed below? Please remember that we are asking about how you use the weather forecast for *planning* activities (not on how you may change plans based on what the weather actually is at the time you do these activities). *Circle the number of your answer for each item.*

<table>
<thead>
<tr>
<th>Activity</th>
<th>Never</th>
<th>Rarely</th>
<th>Half the time</th>
<th>Often</th>
<th>Most of the time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dressing yourself or your children for the day</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>How to get to work, school, or the store</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Job or business</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>House or yardwork</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Social activities</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Vacation or travel</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Planning for the weekend</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Changing from what **WAS** to what **IS** the future of integrated weather studies
Survey design

Peer review of instrument

- technical information
- sampling plan
- questions – Uncle George test
- questions and survey language
- analysis plan
Sampling

• **Population, Units, Subjects and Samples**
 – Population: entire group of people about which information wanted.
 – Units/subjects: Individual members of the population are called units
 – Sample: part of population examined

http://www.gseis.ucla.edu/courses/ed230a2/notes2/sampling.html
Sampling

• Types of Samples
 – Voluntary response sample
 – Convenience (accidental, haphazard) sample
 – Simple random sample
 – Stratified random sample
 – Cluster random sample
 – Multistage sample design

Changing from what **WAS** to what **IS** the future of integrated weather studies
Sampling

- Cautions About Sampling
 - Undercoverage
 - Nonresponse
 - Response bias
 - Social desirability
 - Wording of questions
Implementation

methods for survey implementation
 – telephone
 – in-person
 – internet
 • Knowledge Networks type of access
 – mixed mode – e.g., telephone/mail
 – mail
 • the mail survey “package”
 – pre-contact
 – cover letter
 – survey instrument
 – return envelope
 – incentive
 – reminder post-card
 – follow-up

Changing from what WAS to what IS the future of integrated weather studies
Analysis and reporting

QA/QC
response rate – AAPOR
socio-demographics of pop / sample / respondents
analysis methods
• content analysis
• factor analysis
• latent class variable analysis
quantitative analysis
• summary data
• basic statistical analysis
• econometric modeling

Changing from what **WAS** to what **IS** the future of integrated weather studies
Surveys

- Many rules
- No such thing as perfect sample or survey or study - so, sometimes better to plow ahead
- Beg, borrow, and steal!

Changing from what WAS to what IS the future of integrated weather studies
Literature

Resources

• The American Association for Public Opinion Research: http://www.aapor.org/

• Survey Research Center – University of California, Berkeley: http://srcweb.berkeley.edu/index.html

• Survey Research Center – Centers of the Institute for Social Research (ISR). – University of Michigan: http://www.isr.umich.edu/src/

Changing from what **WAS** to what **IS** the future of integrated weather studies